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Stretching of a confined ferrofluid: Influence of viscous stresses and magnetic field
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An analytical investigation is presented for the stretch flow of a viscous Newtonian ferrofluid highly con-
fined between parallel plates. We focus on the development of interfacial instabilities when the upper plate is
lifted at a described rate, under the action of an applied magnetic field. We derive the mode-coupling differ-
ential equation for the interface perturbation amplitudes and study both linear and nonlinear flow regimes. In
contrast to the great majority of works in stretch flow we take into account stresses originated from velocity
gradients normal to the ferrofluid interface. The impact of such normal stresses is accounted for through a
modified Young-Laplace pressure jump interfacial boundary condition, which also includes the contribution
from magnetic normal traction. We study how the stability properties of the interface and the shape of the
emerging patterns respond to the combined action of normal stresses and magnetic field, both in the presence
and absence of surface tension. We show that the inclusion of normal viscous stresses introduces a pertinent
dependence on the initial aspect ratio, indicating that the number of fingers formed would be overestimated if
such stresses are not taken into account. At early linear stages it is found that such stresses regularize the
system, acting as an effective interfacial tension. At weakly nonlinear stages we verified that normal stresses
reduce finger competition, which can be completely suppressed with the assistance of an azimuthal magnetic
field. We have also found that the magnetic normal traction introduces a purely nonlinear contribution to the
problem, revealing the key role played by the magnetic susceptibility in the control of finger competition.
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I. INTRODUCTION

Among nonequilibrium growth processes, the viscous fin-
gering in Hele-Shaw cell has attracted much attention since
its discovery by Saffman and Taylor [1]. The Saffman-Taylor
instability occurs when a less viscous fluid pushes a more
viscous one in pressure driven flow, resulting in the complex
evolution of the fluid-fluid interface, and producing a wide
range of interfacial patterns [2]. Stable smooth fingers are
produced if the less viscous fluid is pumped from one side of
a long rectangular channel [1,2]. Highly branched, fractal-
like fronts are obtained if injection is performed through a
hole at the center of the upper plate [2—4]. This famous in-
terfacial instability belongs to the well-known family of
Laplacian growth phenomena which includes diffusion lim-
ited aggregation, dendritic growth, and dielectric breakdown
[5].

An alternative way for producing viscous fingering pat-
terns is to stretch a very thin layer of a viscous fluid, sand-
wiched between two parallel plates, by lifting the upper plate
while the lower one remains at rest. As the plates separate the
outer less viscous fluid enters the system, and the more vis-
cous inner fluid moves inward to conserve volume. As a
result, the fluid-fluid interface deforms, forming visually
striking patterns. In such a lifting version of the classic
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Saffman-Taylor problem the upper plate can be lifted from
one end [6-9], or kept always parallel to the lower plate
[10-17]. This last situation is somewhat simpler, in the sense
that it induces a more uniform stretching where the plate
spacing is just time dependent.

In recent years, the quest for other interesting pattern mor-
phologies and even richer phenomenology resulted in a num-
ber of experimental and theoretical investigations of the uni-
form stretch flow in lifting Hele-Shaw cells [10-27]. If the
fluids are immiscible and Newtonian [10,19-21,25-27] it is
found that the initially circular droplet of the more viscous
fluid undergoes a destabilization process via the penetration
of multiple fingers of the outer, less viscous fluid. As time
progresses these inward fingers become progressively
thicker, while the left over branches of the more viscous fluid
tend to form narrower fingers. At this stage, the interface
behavior is markedly characterized by the competition
among the fingers of the invading less viscous fluid, which
advance towards the center of the droplet. At the same time,
it is also observed that the outermost limit of the interface
ceases to shrink, indicating that the competition among the
narrower fingering structures of the more viscous fluid is
suppressed. Following this period of intense instability and
ramification, a second stage arises in which the number of
fingered structures diminishes. In a final stage, near to the
complete debonding of the plates, the droplet tends to shrink
and recircularize. If the fluids are immiscible and non-
Newtonian [11-15,19,22] various other morphological fea-
tures may arise including the formation of highly ramified
tree-like structures. Another interesting modifications assume
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that the system involves miscible [17] or magnetic fluids
[16,24].

When the fluids are Newtonian and immiscible numerical
simulations of the lifting problem in time-dependent gap [10]
show that increasingly smaller values of surface tension lead
to stronger interface ramification, resulting in a delayed re-
circularization process. It has been also verified that when
surface tension is absent, the penetrating fingers compete
strongly, producing the incipient breakup of the contracting
droplet, and ultimately leading to the formation of a topo-
logical singularity. Some important issues related to such sin-
gularity formation can be conveniently investigated by con-
sidering that the two fluids are miscible (zero interfacial
tension situation). Highly accurate numerical simulations for
miscible displacement in a time-dependent gap Hele-Shaw
cell [17] show that the introduction of stresses arising as a
result of concentration gradients at the diffusing interface
may lead to dynamic surface tension-like effects. Such
stresses (known as Korteweg stresses [28]) significantly af-
fect the behavior of the mixing interface, introducing impor-
tant stabilizing effects. In fact, it has been shown that singu-
larity formation can be prevented by the action of stronger
interfacial stresses.

In addition of being an intrinsically important academic
problem, the lifting Hele-Shaw cell system is intimately re-
lated with the practical problem of adhesion [13,18-26]. A
common parameter used for evaluating the effectiveness of
an adhesive material is the time for which two plates sepa-
rated by an adhesive can withstand the advance of viscous
fingers, under constant load conditions [13]. Another possi-
bility is to compute the force or energy required to pull one
of the plates from the other, with constant drive speed
[18—26]. There are recent evidence [13,20,25,26] that in both
cases (constant pulling force or constant lifting velocity) the
presence of the fingering instability may influence the adhe-
sion between separating plates. The work by Thamida et al.
[13] indicates that the adhesiveness of a confined fluid is
strongly reduced (decrease of 50% relative to the case with
no fingering) under constant load conditions, where the fin-
gering instability tends to accelerate immediately to failure.
In constant drive speed experiments [20,25,26] this reduction
in adhesion is comparatively less intense, but still present
notably for small initial plate separations. Other recent ex-
perimental and theoretical work at constant separation veloc-
ity [26,27] have found that the number of fingers predicted
by ordinary linear analysis (based on Darcy’s law and stan-
dard boundary conditions) is larger than the number obtained
in the actual experiment [26,27]. The reason for this discrep-
ancy is still an open and interesting question.

Based on our previous discussion, it is clear that it is very
important to understand pattern formation in lifting Hele-
Shaw cells, and study different ways of controlling emerging
interfacial perturbations when the confined fluid is stretched.
In order to examine possible ways of implementing effective
controlling mechanisms in stretch flow, we consider the in-
fluence of a key factor that so far has been neglected: the
effect of stresses acting normal to the contracting fluid-fluid
interface. In fact, there is little consideration within the lit-
erature for the effect of hydrodynamic stresses in Hele-
Shaw-type problems with immiscible fluids. Only very re-
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cently it has been shown [29,30], in the context of a constant
gap-width rotating Hele-Shaw cell [31,32], that the incorpo-
ration of viscous stresses into the Young-Laplace pressure
boundary condition results in important changes in the inter-
face behavior as the gap spacing is allowed to vary. It means
that key linear and nonlinear properties which determine the
average number of emerging fingers, and finger competition
dynamics are significantly affected as the gap spacing is
modified. Evidently, this effect must be even more relevant
in lifting Hele-Shaw flows, where the interface motion itself
is driven by a gap-varying mechanism. Even though it seems
obvious that viscous stresses should be taken into account in
the description of pattern formation in variable-gap Hele-
Shaw flows, a thorough investigation of this issue is lacking
and still needs to be addressed. This is one of the main pur-
poses of this work.

On the top of the effects of viscous stresses, we assume
that the inner fluid is magnetic, or a ferrofluid [33,34]. These
fluids behave superparamagnetically and can easily be ma-
nipulated with external magnetic fields that can act to either
stabilize or destabilize the fluid interface. Here we investi-
gate the situation in which the ferrofluid droplet evolves un-
der the influence of a simple stabilizing magnetic field
[35,36]. In an earlier work [16], restricted to the zero surface
tension limit, and which completely ignored the effects of
viscous and magnetic stresses, we have found theoretical evi-
dence indicating that a magnetic field could be used to in-
hibit the emergence of cusp singularities in time-dependent
gap Hele-Shaw flow. In this work, we go further and present
a systematic study which investigates the combined role of
interfacial stresses (both viscous and magnetic) and magnetic
field in possibly controlling interfacial instabilities and sin-
gularities.

The paper is organized as follows: In Sec. II we introduce
the formalism and obtain the weakly nonlinear equations de-
scribing flow of a ferrofluid in a variable-gap Hele-Shaw
cell. The development of interfacial patterns is studied con-
sidering the influence of viscous and magnetic stresses, and
the applied magnetic field. Section III discusses our linear
stability results. At linear level we found that the inclusion of
normal viscous stresses introduces a pertinent dependence on
the gap width, indicating that the number of fingers formed
would be overstimated if such stresses are not taken into
account. In Sec. IV we show that some important morpho-
logical features of the interface like finger competition, can
indeed be predicted and more quantitatively explained by our
analytical, second-order mode-coupling approach. It is found
that the magnetic contribution to the pressure jump boundary
condition introduces a purely nonlinear effect into the prob-
lem, unveiling the important role played by the magnetic
susceptibility in determining fingering dynamics at weakly
nonlinear stages. It is verified that the interplay between nor-
mal stresses and azimuthal magnetic field may profoundly
modify pattern evolution, providing effective mechanisms to
control interfacial behavior in stretch flows. Our conclusions
are summarized in Sec. V.

II. THEORETICAL APPROACH AND GOVERNING
EQUATIONS

The geometry of the lifting cell problem is sketched in
Fig. 1. Consider an incompressible ferrofluid of viscosity #
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FIG. 1. Diagrammatic representation of the stretch flow of a
ferrofluid (gray fluid) confined between parallel plates at r=0 (left)
and >0 (right). The azimuthal magnetic field is produced by a
long, straight wire carrying an electric current /.

located between two narrowly spaced flat plates. The outer
fluid is nonmagnetic, and of negligible viscosity. At time ¢
=0 the droplet is circular and has initial radius R,. The initial
plate spacing is represented by b,. At a given time >0 the
plate-plate distance is denoted by b=b(t), and the droplet has
a perturbed shape described as

R(6,1) =R(1) + {(6.1), (1)
where
{0.0= 2 {,(exp(ind) (2)

represents the net interface perturbation with Fourier ampli-
tudes £,(r), and discrete azimuthal wave numbers n. R
=R(1) is the time-dependent unperturbed radius of the shrink-
ing ferrofluid interface. Conservation of ferrofluid volume
leads to the useful relation R%b=R3b,,.

A long straight current-carrying wire of negligible radius
is directed along the axis perpendicular to (coaxial with) the
plates. The magnetic field produced is H=1/(27r)é,, where r
is the distance from the wire, / represents the electric current,
and €, is a unit vector in the azimuthal direction. Note that
the azimuthal symmetry and radial gradient of the magnetic
field will result in a magnetic force directed radially inward
[35,36]. This is one of the ways we use to stabilize the per-
turbed contracting interface.

To study the hydrodynamics of the system, the usual
Navier-Stokes equation is modified through the inclusion of
terms representing the magnetic effects. We follow the stan-
dard approximations used by Rosensweig [33] and others
[34,37-39] and assume that the ferrofluid is magnetized such
that its magnetization M is collinear with the applied field.
When this is the case, the magnetic body force is given by
HmoMVH, where u, is the magnetic permeability of free
space and H is the local magnetic field. The local magnetic
field can include contributions from the applied field as well
as the demagnetizing field. We consider only the lowest or-
der effect of the magnetic interactions that would result in
fluid motion. Thus, in the azimuthal field situation, we con-
sider only the applied field in determining the magnetization
M= yH, where y is a constant magnetic susceptibility.

For the quasi-two-dimensional geometry of the Hele-
Shaw cell, we reduce the three-dimensional (3D) flow to an
equivalent two-dimensional one by averaging over the direc-
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tion perpendicular to the plates. Using no-slip boundary con-
ditions and neglecting inertial terms, one derives a modified
Darcy’s law as [39,40]
2
v=-— b—VH , (3)
129
where V denotes the two-dimensional gradient operator in
polar coordinates (r, 6). The generalized pressure [1=p—¥
contains both the hydrodynamic pressure p and a magnetic
pressure represented by a scalar potential W= xH>/2.
Since the observable quantities (like fluid velocity v) are
determined from gradients in II, we take, without loss of
generality, the generalized pressure of the outer fluid to be
Zero.
We now impose the incompressibility of the full three-
dimensional flow, and take its average over the transversal
direction to obtain a modified incompressibility condition [7]

o)
T b(r)’

where the overdot denotes total time derivative. From Eq. (4)
it can be verified that the equation satisfied by the velocity
potential ¢ (v=—-V ¢) differs from Laplace equation valid in
the usual case of constant gap, so that here the velocity po-
tential is not a harmonic function. However, since the gap is
only time dependent, the solution of the Poisson equation for
¢ can be conveniently expressed in terms of two contribu-
tions, namely ¢= ¢+ B, where d=>br2/(4b) is the radial par-
ticular solution, and ¢, satisfies the Laplace equation [3,4].

In addition to the effects considered above, we still have
to include other important contributions which result from
the action of viscous and magnetic stresses. In order to do
that, we consider a generalized Young-Laplace pressure jump
boundary condition at the interface, which expresses the
equilibrium condition on the normal component of the local

V.v= (4)

stress tensor across the fluid-fluid interface
[29,30,33,34,41-43]
N7 n=—yk+5u(M-n)?, (5)
where
Ju;, o
m=—p6,-k+n{ﬁ+ﬂ] (6)
ox,  ox;

includes a viscous friction term proportional to 7, d; denotes
the Kronecker delta function, and v; represents the ith com-
ponent of the ferrofluids’ velocity vector. The first term at the
right-hand side of Eq. (5) represents the usual contribution
related to surface tension and interfacial curvature x [1-4],
with n=V[r-R(0,1)]/|V[r-R(6,1)]| denoting the unit nor-
mal vector at the interface. A noteworthy feature of Eq. (5) is
the inclusion of a magnetic contribution to the interfacial
stress balance (second term at the right hand side), the so-
called magnetic normal traction [33,34], which considers the
influence of the normal component of the magnetization at
the interface.

By rewriting Eq. (6) in polar coordinates (r, ), and sub-
stituting the resulting expression into the equilibrium condi-
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tion Eq. (5), we obtain the pressure jump boundary condition
at the interface

P

art’

1
p=yK= M- n)’-248n (7)

For the current azimuthal field configuration the lowest order
contribution of the magnetic normal traction term is given by
[uox’I? /8™ R*] (9¢/36)%. Note that this magnetic piece is of
second order in the interface perturbation ¢, being legiti-
mately nonlinear and therefore of no influence at purely lin-
ear stages of interfacial evolution. The third term at the right-
hand side of Eq. (7) takes into account viscous stresses
originated from normal velocity gradients which are nonzero
and of relevance to any radially symmetric Hele-Shaw flow.
Equation (7) expresses that, if viscous stresses and magnetic
interactions are accounted, the curvature term is balanced not
only by pressure difference, but also by the normal compo-
nents of the viscous stress (~dv,/dr) and magnetization.
Note that by “normal,” we mean normal to the fluid-fluid
interface, and not normal to the surface separating the ferrof-
luid and the upper plate. In the present high aspect ratio case
(thin gap compared to any in-plane dimension), the flow be-
tween the plates is mostly horizontal and radial, such that the
Darcy’s law approach (for incompressible and immiscible
Newtonian fluids) applies and viscous stresses acting along
the transversal (~dv./dz) and tangential directions can be
neglected. The parameter § [6=1 (5=0) if normal stresses
are (not) considered] is used to keep track of the contribu-
tions coming from the new term in Eq. (7) in our mode-
coupling description. As we will verify below the addition of
extra stresses in Eq.(7) introduces a pertinent dependence on
the initial aspect ratio at both linear and weakly nonlinear
stages [Eqgs. (8)—(13)].

The problem is then specified by the generalized pressure
jump boundary condition Eq. (7), plus the kinematic bound-
ary condition, which states that the normal components of
each fluid’s velocity v,=—n-V ¢ are continuous at the inter-
face. The tangential components, however, are discontinuous
and give rise to a vortex sheet strength at the interface, where
vorticity is concentrated. Even though the so-called vortex
sheet formalism [44] is an useful alternative tool to describe
interfacial dynamics in Hele-Shaw cells, the tangential ve-
locity discontinuity plays no direct role in determining the
pressure boundary condition (7) in our current problem. Here
the strongest shear flow is along the radial direction. We
define Fourier expansions for the velocity potentials, and use
the boundary conditions to express ¢ in terms of £, to obtain
the dimensionless mode-coupling equation for the system
(for n#0)

én: )\(n)§n+ 2 [F(n,n’)gn’gn—n’ +G(n’n,)én'§n—n’]s

n' #0

(8)

where
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2

1 J1b ab? b
\(n) = ) Ez[|’l|— J(n)]- F|n|(n2 -1)- |n|N31;
©)
denotes the linear growth rate, with
I = {1 .\ 5M] (10)
64°R* ’
where
2R,
=— 11
q by (11)
is the initial aspect ratio, and
1 J1b 1
F(n,n') = IT(n) 5;{|n|(sgn(nn') - 5) —1+[J(n)-1]
=22 anton' =1 || - 2
e _ _ov
-1 n|sgn(nn 'S n

!

3 b?
- %(3;1' + n)] + §|n|NBF{1 + %(n'(n' —n)} ,

(12)

Gn,n')= {|n|[sgn(nn')— 1]-1+[J(n)-1]

RJ(n)
{3|n’| -n'?-2
X e —

=1 + |n|sgn(nn’) - 1}} (13)

represent second-order mode-coupling terms. The sgn func-
tion equals +1 according to the sign of its argument. In Eq.
(8) in-plane lengths, b(z), and time are rescaled by Ly=2R,,

by, and the characteristic time T'=bg/|b(0)
parameter o=ybj3/[127|b(0)|L3] denotes the dimensionless

surface tension, and Np=puoxI*b3/[487°n|b(0)|L]] repre-
sents the dimensionless magnetic Bond number.

As mentioned earlier, note that the extra stress parameter
6=1 [or equivalently, the function J(n)], originated from Eq.
(7), introduces an important additional dependence of the
linear growth rate \(n), and also of the mode-coupling terms
F(n,n') and G(n,n') on the initial aspect ratio g. Note the
presence of the magnetic field term Ny in both A(n) and
F(n,n’), where the contribution from the magnetic normal
traction appears in F(n,n’') as the term including the mag-
netic susceptibility y. Among other things, this dependence
on & and Nj is required to an accurate description of the
finger competition mechanisms in lifting Hele-Shaw flows.
From now on, we work with the dimensionless version of the
equations.

We close this section by pointing out an important re-
quirement of the Darcy’s law formulation we employed in
this work: as is common in Hele-Shaw systems [17], we
consider that during the lifting process the system remains of
large aspect ratio: the gap width b is always far smaller than
a characteristic length scale in the plane of the cell, which we

, respectively. The
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take as the droplet radius R, so that R/b>1. Of course there
are other theoretical approaches for the dynamics of fluids in
the Hele-Shaw geometry which are free from such restric-
tion. For example, under more general circumstances (not
limited to the large aspect ratio requirement) the solution of
full three-dimensional Stokes equations [43] or the Brinkman
model [45-47] are probably more appropriate and accurate
to describe patterns occurring in debonding. However, it is
worth noting that such a more general description would
involve a three-dimensional free boundary problem, where
the interface position itself is an unknown which is part of
the dynamics. So, there is no doubt that it would be a con-
siderably challenging and difficult physical problem [27,46].
Therefore, the Darcy’s model is still a very welcome and
useful tool for exploring the current time-dependent gap
Hele-Shaw problem, at least for sufficiently high aspect ra-
tio.

Finally, we would like to call the reader’s attention to
another noteworthy point: note that, within the large aspect
ratio assumption (R/b>1), the corrections considered in
Egs. (5) and (6) due to viscous stresses and normal magnetic
traction are indeed small compared to the first term in Eq. (7)
(which involves surface tension and interfacial curvature).
On the other hand, it is also well known that the addition of
small corrections into boundary conditions can be extremely
important (see for instance Refs. [29,41]). This is reinforced
by the results we present here, where the typical number of
fingers and the finger competition dynamics are significantly
affected by the small corrections added into the generalized
pressure jump boundary condition [Eq. (7)].

III. LINEAR STABILITY ANALYSIS

We begin our study by using Eq. (8) to examine how the
development of interfacial instabilities at early stages of the
pattern evolution could be modified by the influence of both
viscous stresses and external magnetic field. We emphasize
that the contribution from magnetic stresses (magnetic nor-
mal traction) is intrinsically a nonlinear concern, and is not
required in the linear stability analysis of the problem. Un-
less otherwise stated, we consider a destabilizing driving

b(1)>0, and as in Refs. [10,15,17] we assume an exponen-

tially increasing gap width b(r)=exp 1, such that [b(z)/b(1)]
=1. This is precisely the ideal plate separation profile used in
related adhesion probe-tack tests [22], since it provides a
more uniform kinematics and nearly constant strain rate. At
short times we have that b= 1+t which corresponds to the

constant lifting velocity case with b=1.

Inspecting Eq. (9) for the linear growth rate A(n) we can
gain further insight about the role of lifting, viscous stresses,
magnetic field, and surface tension in determining the inter-
face instability. As usual, the contribution coming from the
surface tension term has a stabilizing nature (o stabilizes
modes of large n). It is also evident that the azimuthal mag-
netic field contribution Ny always tends to stabilize the inter-

face. On the other hand, the lifting term proportional to b/b
basically plays a destabilizing role.

From Eq. (9) we can also obtain some direct conse-
quences on the n dependence of the linear growth rate.
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FIG. 2. Linear growth rate \(n) as a function of mode n, for ¢
=0.2, 0=1.5X 107>, and three different values of Ng: (a) 0, (b)
3.5X 1073, and (c) 7.0 X 1073, The color labeling refers to distinct
values of & and ¢: 6=0 (black), =1, g=100 (dark gray), and &
=1, ¢=50 (light gray).

For example, it can be verified that the mode n=0, that
corresponds to a uniform expansion of the circle, decays
[M(0)=—1] for b(r)>0 as a consequence of mass conserva-
tion, and is marginal [\(0)=0] for b()=0. In addition, the
stability of mode n=1, which corresponds to a rigid transla-
tion of the circular interface, is given solely by the magnetic
term, so that it decays if Ng>0, and is marginal if Nz=0.
This makes perfect sense, since the azimuthal magnetic field
tends to attract the ferrofluid towards the current carrying
wire, keeping the droplet pinned down at the center of the
cell. For modes n =2 the stability depends on the interplay of
the three terms appearing in Eq. (9).

The unusual feature of Eq. (9) is the presence of the factor
J(n) [Eq. (10)], that introduces a dependency on the initial
aspect ratio g. We recall that J(n) arises directly from the
inclusion of viscous stresses into the generalized pressure
boundary condition [Eq. (7)]. However, the most interesting
aspect of Eq. (9) is the fact that J(n) appears as an overall

prefactor, as well as a term multiplied by b(1), being inher-
ently connected to the lifting itself. From Eq. (10) we see
that, if n> 1 the correction incorporated by the term J(n) is
more important when nb/gR ~ 1. Of course, this explicit de-
pendence with g completely disappears if the effect of nor-
mal stresses is not taken into account, so that 6=0, and
J(n)=1.

Figure 2 plots \(n) as a function of mode number n for a
nonzero value of the surface tension parameter o (o=1.5
X 1073), t=0.2, and for three different values of Ny: (a) 0, (b)
3.5X 1073, and (c) 7.0 X 1073, The black curves correspond
to the case in which normal viscous stresses are neglected
(6=0), and the gray curves refer to the cases in which such
stresses are taken into account (8=1). The gray color shading
refers to the following values of the initial aspect ratio: g
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=100 (dark gray), and ¢=50 (light gray). Unless otherwise
stated this will be the color labeling used throughout this
work.

The growth rate curves illustrated in Fig. 2 are character-
ized by a band of unstable modes of width

An.=n.> —n.., (14)

where the critical mode n,~ (n.-) is the solution of a cubic
equation, defined as the largest (smallest) wave number for
which \(n)=0. We point out that unlike the classical finger-
ing problem in outward radial flow [3,4] and the
centrifugally-driven problem in rotating Hele-Shaw cells
[31,32], here the band of unstable modes shrinks from both
ends (n.~ and n..) due to the action of stabilizing effects.

Another common feature of such curves is the presence of
a maximum at n=n,,,,, obtained by setting d\(n)/dn=0. A
quantity closely related to n,,,, is the so-called fastest grow-
ing mode n", defined as the integer mode that produces the
largest growth rate. A given mode 7 is only the fastest grow-
ing when A(n)>N\(n—1) and N(n)>N\(n+1). This is the
mode that will tend to dominate during the early stages of the
pattern formation process and will perhaps determine the
number of fingers in later stages.

By inspecting Fig. 2, we can examine how the magnetic
field and the viscous stresses influence the linear growth rate
when o is nonzero: it is clear that increasingly larger values
of Np decrease the band of unstable modes An,, and reduce
the value of n,,,,. On the other hand, for a given value of Np,
changes in ¢ do not affect An, significantly. However,
smaller values of ¢ lead to a decreased growth rate of the
mode n,,,,, shifting it toward lower values of azimuthal wave
numbers. Since n,,,, determines the typical number of fingers
formed at the onset of the instability, this means that small
initial gaps (or equivalently, larger values of ¢) result in pat-
terns with a larger number of fingers. This is an important
consequence of the inclusion of normal viscous stresses in
Eq. (7). So, if 0#0 the emerging interfacial instabilities
would be more effectively suppressed for larger values of Ny
and smaller values of ¢. It is worth mentioning that if viscous
stresses are neglected (black curves in Fig. 2) the values of
Npax and N(,,,,,) would be overestimated.

As commented in Sec. I, the number of fingers observed
in experiments (with nonmagnetic fluids) at constant lifting
velocity is considerably smaller than that predicted by tradi-
tional linear analysis which neglects normal viscous stresses
and consider standard boundary conditions [26,27]. Recently,
it has been shown [27] that the agreement between experi-
ment and linear theory is improved, specially for large b(z),
if three-dimensional effects are taken into account. These 3D
corrections are introduced considering the influence of wall
wetting effects [41,42], which take into account the existence
of a thin film of variable thickness separating the fingers
from the plates. However, it has also been verified in Ref.
[27] that for small b(r) an important discrepancy still re-
mains, despite the inclusion of 3D effects.

At this point, we suggest that a possible explanation for
the decrease of the numbers of fingers when b(z) is small
found in Ref. [27], can be offered if we consider the effects
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FIG. 3. n,,,, as a function of dimensionless time ¢, for lifting
with constant velocity b=1, o=1.592X 107, and Nz=0. These
parameters match the experimental values presented in Refs.
[19,27]. We plot the experimental data taken from Fig. 4 of Ref.
[27] (open circles), and our corresponding linear stability results
when 6=0 (black curve), and =1 with ¢=80 (gray curve). Note
that the theoretical prediction for the typical number of fingers is
considerably improved when viscous stresses are taken into account
(gray curve).

of normal viscous stresses. As discussed throughout this sec-
tion, the effects of these stresses are indeed more important
for small b(r), or equivalently for earlier times. At such early
times, the instability has just set in, and our linear stability
analysis (which now considers the effect of viscous stresses)
should apply and be sufficiently accurate. A more quantita-
tive account for this fact is depicted in Fig. 3, which plots the
time evolution of n,,, considering the typical experimental
conditions used in Refs. [19,27], i.e., Ry=20 mm, b,

=0.5 mm, constant lifting velocity V=5=20X10"% m/ S,
fluid viscosity #7=92 Pas, and surface tension y=18
X 1073 N/m. By using these physical quantities we plot our
Fig. 3 considering the corresponding dimensionless param-
eters: b=1 and o=7b3/[127|b|(2Ry)*]=1.592X 107°. We
also assume that there is no magnetic field applied (Nz=0),
and consider earlier dimensionless times 0.15<7=<0.50

(note that here the characteristic time T=by/|b|=25). The
black curve represents the situation in which viscous stresses
are neglected (8=0), while the gray curve considers the ef-
fects of such stresses (6=1) for the exact value of the initial
aspect ratio used in Ref. [27], i.e., ¢g=(2Ro/by)=80. The
open circles represent the experiemtal values obtained in Fig.
4 of Ref. [27]. By comparing the black and gray curves in
Fig. 3 it is evident that viscous stresses (gray curve) reduce
the number of fingers significantly, mostly at shorter times
[or, for smaller b(z)]. It is also clear that the typical number
of fingers is indeed overestimated if viscous stresses are not
taken into account (black curve). In addition, by inspecting
Fig. 3 we verify that the agreement between the experimen-
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FIG. 4. Log-log plot depicting how the typical number of fingers
Nay At time t=0 varies with initial plate spacing by (0.1 mm=< b,
< 1.0 mm). The physical parameters are the same as the ones used
in Fig. 3. We plot the experimental data taken from Fig. 3 of Ref.
[27] (open circles), and our corresponding linear stability results
when 6=0 (black dots), and =1 (gray dots).

tally observed number of fingers with the linear theoretical
prediction is considerably improved when the effects of vis-
cous stresses are considered.

To examine this issue a bit more systematically, in Fig. 4
we plot the typical number of fingers n,,,, at early times, for
different values of the initial plate spacing b. As in Ref. [27]
our theoretical data are calculated by assuming that #=0.
Note that Fig. 4 uses the same set of physical parameters
used in Fig. 3 (which was plotted for fixed b,=0.5 mm), but
now the time is fixed (¢=0), and 0.1 mm=<by=<1.0 mm. The
data represented by the black (gray) dots assume that 5=0
(6=1), and the open circles are the experimental data taken
from Fig. 3 of Ref. [27]. By inspecting Fig. 4 we note that
the gray dots (8=1) are always located below the black ones
(6=0), indicating that the inclusion of viscous stresses leads
to theoretical results which are closer to the experimental
data for all measured values of b,. Similarly to what we have
already observed in Fig. 3, the effects of viscous stresses are
indeed more relevant for smaller values of b,. It can be seen
that a better agreement between the theory including stress
(gray dots) and the experiment (open circles) is obtained
within the interval 0.2 mm =< by<0.6 mm. The deviation ob-
served for larger b is somewhat expected from the results of
Ref. [27] (3D effects). Although we do not fully understand
the persisting disagreement for very small plate spacings
(0.1 mm=<by=<0.2 mm), it could be possibly originated
from the inherent inacurracy related to the experimental mea-
surement of the number of fingers at very early times (here
taken as r=0). We point out that an improved agreement
between theory and experiment would be achieved, if the
theoretical data would have been calculated by considering a
small, but nonzero ¢. In summary, from the analysis of Figs.
3 and 4 it seems that in order to improve the agreement
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FIG. 5. Linear growth rate \(n) as a function of mode n, for ¢
=0.2, 0=0, and two different values of Ng: (a) 0, and (b) 7.0
% 1073, The color labeling refers to distinct values of & and g: &
=0 (black), 5=1, g=100 (dark gray), and 6=1, ¢g=50 (light gray).

between linear theory and experiments [26,27] it is necessary
to include not only three-dimensional effects [more relevant
for larger b(z)], but also the effects of normal viscous stresses
[important for intermediate and small b(z)]. In this sense, the
inclusion of normal stresses we propose in this work add an
important element into the discussion about the discrepancies
observed in Refs. [26,27].

Now we analyze the growth rate considering the situation
in which the surface tension parameter is set to zero (see Fig.
5). Throughout this work, the zero surface tension limit will
be particularly useful, since it desensitizes the system with
respect to o, and allows a clearer elucidation of the role
played by viscous stresses and magnetic field. Figure 5 plots
the linear growth rate as a function of mode number, when
=0, t=0.2, Ng:(a) 0, and (b) 7.0X 1073. The value of the
other physical parameters and the color coding are exactly
the same as the ones employed in Fig. 2. When viscous
stresses are neglected [back straight lines in both (a) and (b)]
we notice that \(n) scales with n, and the system is ill posed
[A(n) is unbounded for n— 0], regardless of the value of Nj.
In other words, even though the slope of the straight lines are
reduced for larger values of Np, the growth rate curves will
never present a well defined, finite peak (maximum) at a
finite n if 6=0. So, the magnetic effect alone is not enough to
fully regularize the system at the linear stage, and Nz would
not have any influence in determining n,,, if c=0 and 6
=0.

A completely different scenario is revealed when the ef-
fect of viscous stresses is taken into account: when 6=1
[gray curves in both Figs. 5(a) and 5(b)], higher modes are
stabilized, such that the curves present a well defined, finite
Nmax and a wide (but finite) An,. Notice that, for a given Np,
smaller values of g (light gray curves) lead to lower values of
both n,,,, and An,.. Interestingly, the position (along the n
axis) of the peaks of the gray curves having the same ¢ seem
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FIG. 6. n,,, as a function of the initial aspect ratio ¢, for ¢
=0.2, 0=1.5X% 107, 8=1, and three different values of of Np: (a) 0,
(b) 3.5 1073, and (c) 7.0 X 1073, These physical parameters are the
same as the ones used in Fig. 2.

to coincide. As we have anticipated, the value of n,,,, does
not seem to depend on Ny, but solely on ¢. Therefore, the
existence of a peak in the gray curves of Fig. 5 is due exclu-
sively to the action of viscous stresses. In this sense, the
inclusion of normal stresses (8=1) in the modified pressure
boundary condition Eq. (7) introduces an effective surface
tension into the system. Hence, within the scope of the linear
theory, we conclude that the combined action of magnetic
field and normal viscous stresses could be used as control
parameters to discipline the emergence of interfacial insta-
bilities.

To investigate more closely the combined influence of the
magnetic field and viscous stresses on the mode of largest
growth rate, in Fig. 6 we plot n,,,, as a function of g, for
three different values of Ny, =1, t=0.2, and o=1.5X 1075.
The values of Ny are exactly the same ones as those used in
Fig. 2. By examining Fig. 6 we observe that n,,,1s more
sensitive to changes in ¢ for smaller values of Np. By in-
creasing ¢ in Fig. 6, the typical number of fingers increases
by approximately three units in (a) for Nz=0, two units in (b)
for Ny=3.5X 1073, and roughly by one unit in (c) for Ny
=7.0X 1073, Actually, this is the trend for any time 7: we
have verified that n,,,, is a decreasing function of time, de-
caying more rapidly for smaller values of ¢, and larger val-
ues of Np.

We have also observed that, if o is decreased, n,,,, varies
much more dramatically with ¢ while the three different dot-
ted curves originally shown in Fig. 6 tend to coincide when
o— 0. With respect to this last point, observe Fig. 7 which
plots n,,,, as a function of ¢, when o=0 and 6=1: we note
that hidden in the dotted straight line depicted in Fig. 7 there
are in fact three dotted lines (two other indistinguishable
dotted lines lie hidden). This reinforces our claim (see dis-
cussion of Fig. 5) that Nz has no influence in determining
N,,qc a8 O is set to zero. Indeed, if =0 and we calculate
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FIG. 7. n,,, as a function of the initial aspect ratio ¢, for ¢
=0.2, =0, 6=1, and three different values of Ng: 0, 3.5 X 1073, and
7.0X 1073, Note that hidden in the simple dotted line there are in
fact three lines (one for each value of Np). These physical param-
eters are the same as the ones used in Fig. 5.

d\(n)/dn=0, the terms involving Ny cancel out, and it can

be shown that
6R
=1/——gq. 15
\/; 4 (15)

From Eq. (15) we see that n,,,, varies linearly with ¢, and as
expected, tends to infinity when §— 0 since in this limit \(n)
is unbounded. However, if 6=1, n,,,, is a decreasing function
of time, indicating that, due to viscous stresses, the droplet
would tend to recircularize even if both o and Ny are zero.

Complementary information can be obtained by examin-
ing Fig. 8 which uses the same physical parameters as the
ones utilized in Fig. 6, but depicts a “phase diagram” in
Np-q parameter space for the linearized system. The curves
that encompass the various shaded regions, determined from
the condition

Nn)=\n=1), (16)

denote zones where a particular mode is the fastest growing.
These zones are labeled by n” on the graph. As an example
of how one might use this graph, consider the case where
Ny=3.5X107 is held fixed. When the initial aspect ratio
increases from ¢g=50 to ¢=100, the fastest growing mode
also increases, varying from n*=20 to n"=22. In addition,
notice that as Ny is increased the shaded regions narrow and
become more horizontally oriented, indicating that the influ-
ence of g is weak for higher magnetic Bond numbers. On the
other hand, if ¢ is held fixed (for example, g=100), as Ny is
increased, we see that the fastest growing mode decreases,
changing from n" =25 to n"=18. These findings are in perfect
agreement with what we have observed in Fig. 6 for three
particular values of Ngz. We have also verified that when o
—0 the boundary regions for each n”* become very narrow
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FIG. 8. Log-linear plot of the linear stability phase diagram
showing zones (shaded) of fastest growing mode n" as given by Eq.
(16). The physical parameters are exactly the same as the ones used
in Fig. 2.

stripes directed along the vertical axis (or, along the Ny axis),
in such a way that changes in Nz have no influence whatso-
ever in the values of ", confirming the collapse of curves we
have detected in Fig. 7.

Interestingly, despite the evident dependence of the fastest
growing mode n" (or, 1n,,,,) on both ¢ and Ny when o #0, as
indicated in Figs. 2 and 6, it can be observed that the band of
unstable modes An, decreases for increasing N, but for a
given N, is very weakly influenced by changes in the initial
gap spacing (or, by changes in ¢). This fact can be very
clearly verified in Fig. 9, which depicts how An, changes
with Np, for g=100 (dark gray curve), g=50 (light gray
curve), and when 6=0 (black curve). In contrast, when sur-
face tension is zero and 6=1 (see Fig. 10), the band of un-
stable modes is much more sensitive to changes in g. More-
over, it can be verified that An, changes more significantly
with Np for larger values of g. Again, in the zero surface
tension limit we can have analytical access to another impor-
tant quantity, namely the critical value of the magnetic Bond
number required to stabilize all modes

R 5b |
Np.=—=|1-\-—=1. (17)
2b 6 gR

From Eq. (17) it is clear that when viscous stresses are con-
sidered (6=1) and ¢ is small, a smaller Ny, is required to
stabilize all the modes. It is also worth noting that N, is a
decreasing function of time. This suggests that, as time
progresses, droplet recircularization would be favored, even
if =0.

IV. WEAKLY NONLINEAR DYNAMICS

In the previous section, we have verified that the linear
analysis can be very useful in describing important aspects
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FIG. 9. Width of the band of unstable modes An, as a function
of the magnetic Bond number Nz when o#0: §=0 (black), 5=1,
g=100 (dark gray), and 6=1, ¢=50 (light gray). The physical pa-
rameters are exactly the same as the ones used in Fig. 2.

related to the stability of the fluid-fluid interface, mainly the
ones related to the typical number of fingers formed, and the
critical magnetic field needed to stabilize all interfacial
modes. In this section, we turn our attention to the weakly
nonlinear, intermediate stages of pattern evolution. Now we
are not only interested in interface stability issues, but also to
access important morphological features of the patterns
formed in lifting Hele-Shaw cells.

As discussed in the Introduction of this paper (Sec. I), the
most noteworthy morphological aspect for pattern formation
in lifting Hele-Shaw flow is the strong competition among

8000
S —— ¢=100
\\\ q=50
6000 \\\\\\\\\\\
~
N
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FIG. 10. Width of the band of unstable modes An, as a function
of the magnetic Bond number Nz when o=0: 6=1, ¢=100 (dark
gray), and ¢=50 (light gray). The physical parameters are exactly
the same as the ones used in Fig. 5. There is no black curve (8
=0) since in this case An,— 0.
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the penetrating fingering structures, while the competition
among the fingers of the more viscous fluid is considerably
less intense. Our main goal is to get analytical insight about
such finger competition process both in zero and nonzero
surface tension circumstances, when the combined action of
normal stresses and magnetic field are considered. The
purely nonlinear effects introduced by the magnetic normal
traction [ uy(M-n)?]/2 [second term on the right hand side of
Eq. (7)] are also examined.

The second order mode-coupling approach executed here
has been quite successful in accurately describing finger
competition mechanisms arising in radial Hele-Shaw cells
with injection [4] and also in rotating Hele-Shaw flow [30].
Recent numerical results [48] substantiate the analytical pre-
dictions of Ref. [30], providing a convincing evidence of the
usefulness of the weakly nonlinear description. Within our
weakly nonlinear approach, finger competition is related to
the influence of a fundamental mode n, assuming #n is even,
on the growth of its subharmonic mode n/2 [4,30]. To sim-
plify our discussion it is convenient to rewrite the net pertur-
bation { in terms of cosine [a,=¢,+{_,] and sine [b,=i({,
—{_,)] modes. Without loss of generality we may choose the
phase of the fundamental mode so that a,>0 and b,=0.
From Eq. (8) we obtain the equations of motion for the sub-
harmonic mode

an ={N(n/2) + C(n)a,}a,p, (18)

bn/Z = {)\(n/2) - C(n)an}bn/29 (19)

where the function

1 nn n o n
C(n)—z{F< 2,2)+)\(n/2)G(2, 2)} (20)
regulates finger competition behavior.

In Fig. 11 we plot C(n) as a function of time for two
values of n, when o=1.5x107>. The solid (dashed) curves
describe the behavior of C(n) in the absence (presence) of
the magnetic field. The nonzero Ny=2.0X10™* and y=5.
The black (gray) curves assume that the normal stress param-
eter =0 (6=1). Light (dark) gray curves refer to ¢g=50 (g
=100). It is clear from Fig. 11 that C(n) <0. From Egs. (18)
and (19) we verify that a negative C(n) increases the growth
of the sine subharmonic b,,,, while inhibiting growth of its
cosine subharmonic a,,,. The result is an increased variabil-
ity among the lengths of fingers of the outer fluid penetrating
into the ferrofluid. This effect describes the competition of
inward fingers. We stress this is in line with what is observed
in experiments [19-21,25,26] and numerical simulations [10]
of the lifting flow problem with nonmagnetic fluids.

At intermediate stages of pattern evolution, the question
arises as whether viscous stresses play a relevant role in the
finger competition dynamics. To examine this issue, first we
focus on the situation in which there is no applied magnetic
field (solid curves in Fig. 11). If Nz=0 we see that the curves
representing C(n) behave differently if the influence of vis-
cous stresses is taken into account: for a given n, we see that
the curve associated to smaller ¢ lies on the top of the other
two. This indicates that finger competition would be less
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FIG. 11. C(n) as a function of time for modes n=16 and n
=20 in the nonzero surface tension case (o=1.5X 107°). The black
(gray) curves refer to §=0 (5=1). The magnetic Bond number is
Np=0 (Ny=2.0X 107 for the solid (dashed) curves, g=50 (light
gray curves), and g=100 (dark gray curves). The magnetic suscep-
tibility y=>5. Note that the initial aspect ratio g comes into play only
when 6=1.

intense for lower values of the initial aspect ratio ¢g. So, the
harder the spatial confinement set at =0, the harder the com-
petition at later times. This theoretical finding is in agree-
ment with the experimental observations for stretch-flow of
immiscible (nonmagnetic) Newtonian fluids [19,26,27]. In
such experiments, little (strong) fingering and competition
are observed for large (small) initial plate spacing. The de-
pendence of the finger competition dynamics on ¢ is another
important consequence of the introduction of normal stresses
into the lifting Hele-Shaw cell problem.

Despite the important connection between finger competi-
ton and ¢ discussed in the previous paragraph, it is worth
noting that, the combined effect of normal stresses and sur-
face tension is not quite enough to make C(n) — 0 within the
typical time scales for which our theory is quantitatively ac-
curate. A distinct behavior is observed when the magnetic
field is nonzero (dashed curves in Fig. 11): C(n) is negative
and increases as time advances. Eventually, C(n) vanishes
meaning that the competition ceases due to the action of the
magnetic field. Although normal stresses may contribute to
restrain competition of inward fingers when Nz # 0, they do
not have a major role in setting the time for which competi-
tion vanishes. This can be verified by the fact that, for a
given n, all dashed curves tend to coincide when C(n) —0. It
is also interesting to observe that competition goes to zero
first for mode n=20, making the dashed curves for n=16 and
n=20 to cross one another before they reach the C(n)=0
line.

In Fig. 12 we plot C(n) as a function of ¢, but now we
assume that o=0. All remaining physical parameters are
identical to those used in Fig. 11. By inspecting Fig. 12 we
note that when Nz=0 (solid curves), C(n) is a monotonically
decreasing function of time. By comparing the solid curves
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FIG. 12. C(n) as a function of time for modes n=16 and n
=20 in the zero surface tension case. The black (gray) curves refer
to 6=0 (8=1). The magnetic Bond number is Nz=0 (Nz=2.0
X 107*) for the solid (dashed) curves, ¢=50 (light gray curves), and
g=100 (dark gray curves). The magnetic susceptibility y=5. Note
that the initial aspect ratio ¢ comes into play only when d=1.

plotted in Figs. 11 and 12, one clearly observes that the ab-
sence of surface tension is responsible for such a behavior.
This would favor an ever increasing competition among the
inward fingers. However, it is important to point out that,
although surface tension is completely absent in Fig. 12, nor-
mal stresses still act to decrease the intensity of the finger
competition (solid curves move upwards for smaller g).

Similarly to the nonzero surface tension case illustrated in
Fig. 11, the situation is changed when an external magnetic
field is applied. By observing the dashed curves in Fig. 12
we see that they go to zero at a given time, indicating that
competition vanishes, despite the fact that =0. As expected,
by comparing Figs. 11 and 12 we conclude that the required
time to suppress competition is smaller when surface tension
is nonzero. This is clearly verified by noting that the zeros of
the dashed C(n) curves are shifted to the left in Fig. 11.

In order to analyze in greater detail other relevant aspects
of the finger competition dynamics in the lifting Hele-Shaw
setup, we conclude this section by analyzing Figs. 13 and 14.
Figure 13 summarizes the influence of viscous stresses on
finger competition both in the absence (a) and presence (b) of
surface tension. For both values of surface tension, we con-
sider two different values of the initial aspect ratio: g=100
(dark gray) and ¢=50 (light gray). We focus on the case in
which Nz=0, and plot the dimensionless time 7 at which the
finger competition function C(n) assumes its largest magni-
tude (minima of the solid gray curves in Figs. 11 and 12), as
a function of mode n. Indeed, we verify that finger competi-
tion can be significantly affected by the sole action of vis-
cous stresses. When surface tension is zero [Fig. 13(a)] we
note that, for a given n, 7 is smaller for higher initial con-
finement (larger ¢). It is evident that, the lifting system is
strongly dependent on the initial conditions, in the sense that
changes in ¢ lead to important variations in the finger com-
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FIG. 13. Dimensionless time 7~ for which the strength of finger
competition is largest (in the absence of a magnetic field) as a
function of mode n, when (a) o=0 (see Fig. 12), (b) o=1.5
X 107 (see Fig. 11). We consider that ¢g=100 (dark gray) and ¢
=50 (light gray).

petition dynamics. It is also observed that 7" is a decreasing
function of mode n, indicating that finger competition is
stronger at relatively early stages of the lifting process, when
higher modes n are manifestly unstable. All these remarks
are also valid for the nonzero surface tension case [Fig.
13(b)], but from the fact that curves for different g are closer
to each other, it is obvious that the existence of interfacial
tension (which stabilizes modes of large n) decreases the
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FIG. 14. Dimensionless time 7 for which C(n)=0, as a func-
tion of magnetic susceptibility x (1<y=<10), when (a) o=0,
(b) 0=1.5X 1073, for n=30, Ng=2.0X 107*, and 6=0. The remain-
ing physical parameters are the same is the ones used in Figs. 11
and 12.
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sensitivity of the system with respect to changes in g.

We proceed by examining Fig. 14. Here we intend to
investigate a bit more closely the influence of the purely
nonlinear contribution coming from the magnetic normal
traction [second term on the right hand side of Eq. (7)],
which introduced an explicit dependence of the mode-
coupling term F(n,n’) on the magnetic susceptibility y [last
term in Eq. (12)]. Figure 14 depicts the time 7 at which all
finger competition is suppressed [zeros of C(n) for Ny #0]
as a function of magnetic susceptibility y, for both (a) zero
and (b) nonzero surface tension (o=1.5X 1075) cases. With-
out loss of generality we assume that n=30 and Np=2.0
X 1074, and use the same physical parameters employed in
Figs. 11 and 12. Since the influence of normal viscous
stresses is negligible to determine 7, Fig. 14 is plotted by
assuming that 6=0.

Figure 14 clearly illustrates that, regardless the value of o,
the time 7 required to completely suppress finger competition
is strongly dependent on the value of the magnetic suscepti-
bility, becoming significantly smaller as y is increased. At
first, this dependence may seem too obvious. However, we
note in passing that the value of the magnetic Bond number
used throughout this weakly nonlinear Sec. IV is one order
of magnitude smaller than the typical values of Ny utilized in
the linear study carried out in Sec. III. This is possible due to
the inclusion of the magnetic normal traction in Eq. (7). Now
one can afford using a considerably lower value of Ny and
still completely restrain finger competition by tuning the
value of the magnetic susceptibility. In other words, even if
Ny is kept fixed, one might determine the typical time for
which finger competition should be suppressed, by appropri-
ately selecting the value of x. We can gain additional insight
about this last point by analyzing the expression of the mag-
netic Bond number which is required to suppress finger
competition entirely (for simplicity we assume that c=0 and
5=0)

N _<L)N (21)
B= )(n2+4n+10 Bes

obtained from Eq. (20) by setting C(n)=0. In Eq. (21) Nj,
denotes the critical magnetic Bond number required to stabi-
lize all interfacial modes at linear stages [see Eq. (17)], while

Ny is a legitimately nonlinear concept. From Eq. (21) we

notice that the magnetic Bond number Ny at which compe-
tition is fully suppressed can be indeed significantly smaller
than the critical (linear) Bond number Ny, mainly for larger

values of y and n. This dependence of N on y is a direct and
important consequence of the introduction of the magnetic
normal traction term in the generalized Young-Laplace pres-
sure jump boundary condition [Eq. (7)]. This purely nonlin-
ear magnetic contribution provides an additional support to
the idea of conveniently controlling interfacial instabilities
and singularities in lifting Hele-Shaw cells by magnetic
means [16,24].

V. CONCLUDING REMARKS

In this work we studied various aspects related to pattern
formation in lifting Hele-Shaw cells both in the purely linear,
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and during intermediate nonlinear stages of interface evolu-
tion. Our analytical approach incorporates the combined role
of three relevant parameters for the problem, namely the vis-
cous stresses (accounted when 5=1), the applied magnetic
field (Ng), and the surface tension (o). In particular, we have
explored the fact that the inclusion of viscous stresses into
the problem leads to a pertinent dependence of the system on
the initial aspect ratio ¢ at both linear and nonlinear stages.
At the nonlinear level, a fourth relevant parameter (the mag-
netic susceptibility y) is revealed, resulting from the action
of magnetic stresses (magnetic normal traction) at the inter-
face.

At the linear stage, if o=0 it is verified that viscous
stresses regularize the system, working as an effective sur-
face tension. In this case the initial aspect ratio ¢ influences
both the typical number of fingers n,,,, and the band of un-
stable modes An,: An, changes more significantly with Ng
for larger ¢, but n,,,, does not depend on N, but solely on g.
If o# 0, we have shown that the typical number of fingers is
quite influenced by ¢, while An, does not change as much.
When radial viscous stresses are considered we find the num-
ber of emerging fingers to be considerably smaller than the
predicted by usual linear stability analyses which neglect
such stresses. This last theoretical finding is supported by
experimental results in lifting Hele-Shaw flows with non-
magnetic fluids [19,27]. This indicates that the inclusion of
viscous stresses add an important element to elucidate recent
discrepancies between other theoretical models (which ne-
glect viscous stresses) and experiments on the typical num-
ber of fingers [26,27].

At the weakly nonlinear stage, we focus on the influence
of & and Ny on the competition among fingering structures.
We have found that normal stresses significantly affect finger
competition dynamics, leading to an interesting connection
between the initial aspect ratio and the strength of the com-
petition: if the system is highly confined at t=0 (larger ¢) the
competition at later times is expected to be quite strong as
well. Therefore, we have shown that the inclusion of viscous
stresses is of considerable importance for an accurate de-
scription of the lifting problem. We have also identified the
specific role played by Ny and &: while viscous stresses act
to restrain or delay the occurrence of finger competition, the
magnetic field is able to suppress it completely. The intrinsi-
cally nonlinear effect introduced by the magnetic normal
traction in the generalized pressure boundary condition [Eq.
(7)] has also been examined. It revealed the key role played
by the magnetic susceptibility y in the control mechanism of
the finger competition dynamics. We have found that by
choosing an appropriate ferrofluid (that is, by tuning y), one
can presumably control the fingering development by using
magnetic Bond numbers which are far smaller in magnitude
than those typically predicted by linear stability theory. In
this context, the combined action of normal viscous stresses,
magnetic normal traction, and magnetic field conspire to in-
hibit the formation of interfacial instabilities if o# 0, and to
prevent interfacial singularities when o=0.
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The fact that normal (viscous and magnetic) stresses and
azimuthal magnetic field restrain fingering formation in
stretch flow may have important implications on the evalua-
tion of adhesiveness and peel-off forces of a given liquid
adhesive material. It has been recently shown [24], under
constant drive speed conditions and by neglecting effects of
fingering, that the net effect of an azimuthal magnetic field
would be to reduce adhesion. A natural extension of the cur-
rent work is to investigate the role of normal stresses, mag-
netic field, and fingering in possibly influencing the adhesion
properties of confined fluids both under constant load [13]
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and constant lifting velocity [18-21,25,26] circumstances.
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